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ABSTRAC T 

A mod«! '»as been developed for the prediction ol the time dependent 
p.operti^s of the gas surrounding a water droplet under irradiation by a 
high intensity laser beam.    The basic phenomena included in the model are 
absorption, heating and vaporization in the droplet and convection, thermal 
conduction and diffusion in the gas.    The model assumes volume absorption 
by the droplet,  a constant pressure gas,  and that the initial vapor velocity 
is much less than the local sound speed.    The conditionj under which these 
assumptions are appropriate have been identified.     A number ol preliminary 
calculations are presented. 
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AEROSOL PROPAGATION EFFECTS 

I.    INTRODUCTION 

The Aerosol Propagation Effects program is concerned with the 

prediction of laser beam degradation resulting from the interaction between 

a high power laser beam and atmospheric aerosols.     The particular emphasis 

of this program is on the absorption,   scattering and thermal blooming of a 

DF laser propagating through an atmosphere contaminated by hygroscopic 

aerosols.    The overall program includes a review of the properties of 

atmospheric aerosols,   a study of the atmospheric heating resulting from 

aerc sol absorption of laser energy and first order predictions of the laser 

bean   thermal blooming resulting from this atmospheric heating. 

The particulai  problem addressed in this mid-program progress 

report is the prediction of the space/time variation in the temperature and 

water vapor distributions about a pure water droplet irradiated by a laser beam. 

This problem is relevant to beam propagation through hygroscopic aerosols 

on humid days.    Effects resulting from the varying properties of real aerosol 

solutes and original Aitken nuclei will be discussed in the final report. 

The description of the general problem and derivation of the governing 

partial dfferential equations for thr droplet and surrounding gas will be given 

in Section II.    Specific 'steady state ' and time dependent computer solutions of 

the problem will be presented in Section III.     The conclusions and future 

direciions of the study are presented in Section iV. 
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II.    MODELING 

In the problem under consideration the aerosol droplet absorbs 

energy and is heated.    As the dropltt temperature rises above ambient 

the droplet conducts heat energy to the surrounding air and undergoes surface 

vaporization.     The vapor leaves the droplet with a directed velocity and a 

pressure wave is induced in the surrounding gas in response to the mass and 

heat addition.    (If the rate of energy absorption were sufficiently large the 

droplet would "explore",   creating a shock wave; however,  the present analysis 

will be limited to laser intensities and droplet sizes such that the directed 

velocity of the vapor leaving the droplet surface is much less than the local 

sound speed. )   An additional feature which must be included in the analysis is 

the fact that the droplet radius decreases with time due to mass loss resulting 

from vaporization. 

A.    Gas Equations 

A number of approximations have been made to simplify the solution 

of this problem.    The most prominent of these is that the gas is taken to be a 

constant pressure.    As pointed out above,   pressure gradients are induced in 

the gas because of the mass and heat addition from the droplet.    However,   if 

the pressure equilibrates on a time scale fast relative to the times for conduction 

and diffusion then the heat and mass transfer may be at.sumed to be occurring 

in a constant pressure gas.     The characteristic time for water vapor to diffuse 

a distance L in air is approximately 

TD   -     L/D (l) 

where D is the diffusion coefficient.    The characteristic time for heat conduction 

in air is 

TC    ^     L    P   CPÄ
/kA 

A 
(2) 
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^here D   is the density.  Cp    the specific heat and kA the thermal conductivity 
A 

of air.    Lastly,  the chare cteristic time for pressure equilibrium is 

*     L/c (3) 

where c is the sound speed in air.    Evaluating these expressions with 
_ 3 

■ 1. 2 x 10      gms/cc,  Cp A „ V 
D = 0.24 cm2/sec,  PA ■ l.l« 10'3 gms/cc.  CpA  ■ 0.24 cal. /gm-0K. 

kA  = 6. 2 x 10'5 cal. /cm-8ec-0K and c ^  3 x 10    cm/sec results in 

T        ~    T »    T (4) 

DC P 

for   L >   1 ^m.    The characteristic droplet sizes of interest in this work 

are a few tenths urn to 50 Um,  and for the typical atmospheric aerosol 

distributions of interest the average spacing between droplets,  which would 

be the heating range of interest,  is approximately OPP mm.    Thus,  it would 

appear that the approximation of a constant pressure gas is reasonable. 

Another simplifying approximation used is that the gas properties are 

taken to be those of  clean air.    Although this approximation would suggest that 

the defining equations would not be valid for high water vapor concentrations 

this is not the case, as will be demonstrated later in this section.    Also,  the 

coefficient of thermal conductivity,  kA and the product of the coefficient of 

diffusion and number density,   DN,   were taken to be constart.     These quantities 

vary by <   15% over the temperature range of interest,   0 -   100° C. 

The last simplifications concern the fluid mechames.     The processes 

considered in the analysis are thermal conduction,  diffusion and convection. 

The phenomena of thermal diffusion (Soret effect) and thermo-diffusion 

(Dufour effect) havre not been included.    Generally, these processes are insig- 

nificant in flow fields of the t/pe under consideration; nonetheless,  the validity 

of this assertion will be determined from the computer results.     Furthermore, 

consideration must be given to gravitational effects.    As the gas surrounding 
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the droplet is heated it will rise.    The characteristic lime for the gas to rise 

a distance L is: 

g    -    (zUg   [AP/D]\ 
1/2 

|5) 

where g is the acceleration due to gravity,   980 cm/sec   ,  and Ap/0   is the 

fractional difference in density between the heated gas and the surrounding 

medium.     A strong lower bound or T     corresponds to  AD /p    ~    0. 3.     Even 

in this limit it can be shown that 

T ~       T        « 
D C I 

for   L  less than one mm.    CX course this effect might have to be included for 

long time (t >   0. I  sec) irradiation.    However,   in this case it would perhaps 

be more appropriate to treat the aerosols as an aggregate rather than individually. 

Within the framework of the above-mentioned approximations,  the general 

relationships describing the system are 

a)   Conservation of mass 

öp /öt    ■    - V  •   (P V) (6) 

where V  is the gas velocity 

b)    Euler's equation 

öV/öt v •  y  V (7) 

c)   Conservation of energy 

Ö (1/2 P V2 + DC     D/Öt   =   -  v   •    | p V(l/2 V2 + C   T) - k 7T] (8) 

where C      is the specific heat at constant volume 

-4- 

—_ 



and 

d)   The diffusion equation 

ö p   /öt   =   V   '   (D V P P     V) 
v        v (9) 

where p    is the water vapor density and D is the H  O-air diffusion 

coefficient. 

If the droplet is heated uniformly (see Section B),  the system is 

spherically symmetric and it can be shown that the ordered kinetic energy 

terms drop out of the equations under the assumption of constant pressure. 

The relevant gas equations for r >  R,   where R is the droplet radius,   are 

ÖT/öt   =   - V ÖT/ör + 
k k     AT 

A  
■^   (r2 ÖT/ör). (10) 

ÖX   /öt 
v 

VÖX   /or   + 
v 

k T (DN) 

Pr2 
7—  (r    » X   /or), 
or v (H) 

ö V/Ö r   =    - 2 V/r    + 
k k     A 

A 

■■'^/"A 

ö 2 
—   (»     öT/ir). (12) 

where k is Boltzmann's constant, A is Avogadro's number, P is the total 

pressure taken as one atm. , M is the molecular weight of air, N is the 

total number densi.y,   and X    is the mole fraction of water vapor. 

These equations have been formulated in terms of number density rather 

than mass density, since in a constant pressure flow of two gases with different 

molecular weights the quantity NT,   rather than P T,   remains constant,     ^s 
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mentioned earlier,  these equations were derived under the assumption 

X        «   I.    In reality, the quantitv C.,    M      should be replaced by the 
v J A     A 

expression 

r       M     (I - x )   +  c:      M   X 
P A v P        v     v 

A v 

where the subscript v refers to water vapor,  and the diffusion coefficient should 

be replaced by that for full binary diffusion.    However,  over the temperature 

and water vapor ranges of interest in this problem these latter two quantities 

are reasonably constant and well represented by Cp     MA   and D,   respectively. 
A 

Thus Eqs.   (10)-(12) are approximately valid for water vapor concentrations 

approaching unity. 

B.     Droplet Equations 

In the present analysis the temperature field across the droplet has 

been taken to be uniform.    As long as the laser radiation is absorbed volumetncally 

by the droplet,  this approximation is reasonable until the droplet temperature 

approaches the boiling point of water (see Section III).    The absorption co- 

efficient of a water droplet is a complex function of droplet radius,   laser 

wavelength and the complex index of refraction (see for example Ref.   1). 
Z 

However,   for 4 Um    radiation liquid water has a bulk absorption coefficient, 

CL,   of ~   100 cm'1,  and it can be shown that for .hese conditions water droplets 

of radius^   SO um   undergo volume absorption.     (The general relationship for 

the absorption coefficient of a water droplet may be found in Rtf.   3 and 

references therein. ) 

The basic equation connecting the droplet and gas dynamics is conserva- 

tion of energy in the droplet. 

■MHak>__. 



4/3TTR3Ii     =      4/3TTR}p       C d T    /dt 
D 

+     4 TT  R2 k     (- ÖT/Or |R) n n 

M 
+      4 TTR^ ^H     —^    (NV)   , 

v    A 

The LHS of Eq. (13) is the rate of absorption of energy. Nvhere I is the laser 

intensity, and the RHf represents the energy disposition into droplet heating, 

conduction and vaporization respectively. The quantity AH^ is the change in 

enthalpy required to proceed from liquid to gaseous state and the »ubscript D 

refers 10 droplet properties. Note that the temperature is continuous across 

the droplet surface: i.e. TD - I (R). The terms involving the ordered kinetu 

energy of the vapor ^re negligible for the present considerations dud luv« '.een 

left out of Eq.   (13). 

The vapor concentration at the surface of the droplet has been related to 

the droplet temperature by the Clausius-Clapeyron relationship. 

d In X 

d T 

A H 

P 
R   r 

v 

(14) 

where R    is the ideal gas constant per unit mass of water vapor.     It has been 

demonstrated4 that this relationship properiv describes the surface vmpot pressure 

of a water droplet when the vapor velocity is less than the sound speed.    In tlu- 

present, analysis Eq.   (14) has been used in its integral form 

X    (R)    =    X exp jüvilallj 
R     Tn v       D 

(IS) 



where the subscript ■   refers to ambient conditions.     Eq.   (15) is derived under 

the assumption that A H    is a constant.     Indeed   A H    varies by less than  lO^o 
v v 

between 0 -   100    C and has been taken to have the constant value of ^^ ral/gm. 

The last equation connecting the droplet and gas behavior is the con- 

servation of n ass of the vapor.     If a spherical shell of thickness   ^.  R is 

constructed about the droplet,  then it is required that the rate ol mass loss of 

the droplet be balanced by the rate of increase of vapor within the shell plus the 

rate of vapor leaving the exterior of the shell.     With some straightforward 

mathematical manipulation this leads to the relationship 

(NV) 
R 

(I  - X    (R)   ) 
v 

-1 
DN  fiX   /fir (1*0 

H 

C.     Effect ol Varying Droplet. S^e 

So far in the analysis the effect of decreasing droplet size has not Leen 

considered.      This effect ran be uncoupled because the rate of change of droplet 

size is  small compared to the rate of change of the gas parameters (because of the 

large difference between liquid ,->nd gas densities).    Of course,   it has been 

implicitly assumed that the time varying,   rather than initial,   value of R will 

be used in the solution of the equations. 

The governing equations have been recast in terms of the variable 

R (t)/r (17) 

In terms of this variable the equations may be written as 

bT/bt   ■   R'
1
 (Q/4 -  t  dR/dt) ÖT/ÖZ 

k kAA -2     4    2       ,„    2 
f cr-¥M TR   z » Tfbz 

P
A A 

(18) 

-H- 



ÖX/öt     =     R'1 (QZ4 -  Z dR/dt) Ö X   /ÖZ 
v v 

11« ■ 

.    1<^N    rR^z
4
02x   ,      I 

P v 
(I'M 

t Q/ö Z 
k k     A 

A 

R'
1
 ö

2
 T/öZ

2 (20) 

wh ere 

P M 
dR/dt 

ASDkT Q (Z  -  1) (21J 

and 

Q    =  V/Z (23) 

The transformed boundary conditions at r = R {/, =  1) are 

I a   =   c     C,     ö T/öt 
D    'D 

+   3 R"2 k    ÖT/Ö Z 
A 

Z=l Z=i 

M    Ml    P 
»    3R- V

Ak; Q(Z=1). (23) 

Q (Z=  1)    =    R 
1    k 1-^   [i -X  CZ.l)Vl6X ft 

p L v J v 
z=i 

and the Clausius-Clapeyron relationship,   Eq.   (15). 

(24) 
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UI.      PRELIMINARY CALCLLATIQNS 

No analytic solution has been found for the system of Eqs.   (15), 

(IK) - (24),     A computer program has been devtloped for their numerical 

evaluation which employs a fully implicit Crank - Nicolson finite difference 

schome.    A complication in usinp tn«  Z co-ordinate is that a constant «rid 

size in  /. space r««vlti in a limited number of «rid points at lar^i-  r,  where 

UM solution may be most interesting.     This complication has been circum- 

vented by modifying the finite difference IclMmc to allow for a chan«e in 

«rid sparing at small 2.    In tin- pn-st-nt mod« of ..peration tin- «rid spacing 

tor 0.0^    /. <    0.05 is an order of magnitude finer than that for 0.05 <   / 

4   1.00. 

The computer code is now operational and a number of preliminary 

calculations have Ix-.n performed.     However,  these are insufficient in a 

number to provide an overview of the problem.    A "steady state" analysis 

of the equations has simultaneously been perform-d in order to predict 

the effects of varying fundamental parameters such as particle radius and 

laser intensity. 

A.     Stead\   Stale Solutions 

In the limit where the velocity term in Eqs.   (IK) and (19| can be 

neglected,  the equations effectively uncouple,   and it can be readily demon- 

strated that the   :*eady state solutions for      A T(      T   -  T^  )   and 

A   X   (   ^  X     -  X ) scale inversely with r,   i.e., 
v v v i 

AT(r) (R/r)AT(R) (25) 

and 

AX  (r)    -   (R/r) AX  (R) 
v ^ 

(26) 

Indeed,   even the time dependent solutions,  which may be found in standard 

texts (for example,   Ref.   5) vary approximately as r        for    r   ~   R.     Thus, 
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in the limit of low velocity the gradients app  aring in the equation for drop- 

let energy conservation,   Eq.  (23),   may be evamuted by use of Eq.  (ZS) and 

(26). 

If this is done,   use of Eqs.   (15),   (23) and (24) results in 

d(A TD)/dt 
R   ^DCP. 

{^ 
R   I a k   AT 

AHM 
 S—^-    DN( 1  - X   (R))' 

A V 
1(X   (R)- X       )) 

V V oo 
127) 

where 

X   (R) - X v v( 

AH    AT 
xvV.  {•^[rfS^TxTTrJ " ' 1 

Although this Hifferential equation is separable,   it affords no simple analytic 

solution.    One feature of interest is the maximum value of   ATD which is 

reached when the time derivative is zero.     Equation (27) in this limit re- 

duces to a transcendental equation for   ^^D_mSiX   which may bc ™aluaU>d 

as a function of the parameter R  I c  .   The solution to this equation is shown 
2 

in Fig.   1 over a range of 5 orders of magnitude in the parameter R   I 0. 

Shown for comparison are the predicted maximum droplet temperatures 

for the related cases of "heat conduction only" and "vaporization only". 

These calculations were performed for initial conditions of T^ 293   K, 

X =    2. 1 x 10'   . 

Note that for the full range of R   I x   shown the   AT^^^ predicted 

{or the case of heat conduction alone is significantly higher than that pre- 

dicted when both heat conduction and vaporization were included.    On the 

11- 
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-■ la.CAL/CM-SEC 

pio,   1 Maximum Increase in Droplet Temperature vs.   R  II.    Also 
shown is the fraction of absorbed energy lost to heat conduction 
and the predicted variation in temperature across the droplet. 
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other hand,  the predictions for the case of "vaporization only" are relatively 

close to the full solution.      The reason for this is that the major portion of 

the absorbed energy goes into vaporization rather than heat conduction.    This 

is shown explicitly in Fig.   1 where the fraction of the absorbed energy whicl 
2 2 

is lost to heat conduction is plotted vs.   R  1 a.     For low R  I:   tlus fraction 
2 

asymptotes to   -, 0. 3,  and falls off rapidly with increasing R  la .    This 

rapid fall-off occurs as the droplet temperature approaches the boiling 

point.    This is because the vaporization rate increases exponentially in this 

region,  whereas the rat" of heat conduction appruac MIS a constant.    The 

relative value of this frai tior. is determined by the ratio of the last two 

terms on the RHS of Eq.   (27).      For small   AT0-n|||J( this ratio reduces to 

Power into heat conduction 
Power into vapo -ization 

k     R    T     ' A(l  - X 
A      V      ■ v ■ 

2 
X      .ON(AH ) II 

Vm V v 

a 0.43 (28) 

in agreement with the asymptotic value shown in Fig.   1 (i.e.,   0. 43 / 1. 43 a 0. V). 

It should be pointed out that as the droplet temperature approaches the 

boiling point the convecuvc terms left out of the steady st ite analysis become 

more important and convcctive heat transfer might dominate conductive heat 

transfer.     The steady state equations including convection are more compli- 

cated,   but can be analyzed.    A discussion of convective effects will be in- 

cluded in the final report. 

The fact that vaporization dominates heat conduction as an energ-- 

loss mechanism allows an approximate analytic formulation for several of 

the variables of interest in the problem.    In particular,   in steady state it 

can be readily shown from Eq.   (27) that t!l« rate of mass loss from the 

13- 



droplet can be expressed as 

dm/dt    -    - 4/3     r R  la M H (29) 

or in terms of the droplet radius 

dR/dt    ■ -IUa/(3 A Hv PD) (30) 

From £q.   (30) it can be seen that thi   characteristic e-folding time for drop- 

let radium is 

R 
3 AH    pu/la 

V   T) 
(31] 

which is inversely proportional to   I CL  and independent of initial particle 

size.     Lastly,  the vapor velocity at the droplet surface is given by 

V(R)   *    MA RIa/1 3M    p A H    ) 
A v v 

(32) 

Note this latter quantity scales as RI a   rather than R" 11,   and thus is less 

sensitive to changes in radius than the droplet temperature. 

A last point before leaving the discussion on steady state solutions 

concerns the importance of temperature gradients within the droplet«     If 

one considers vo ume heating followed by heat conduction as the only phen- 

omenon occurring within the droplet,  the defining steady state energy- 

equation becomes 

4/3nr   la   ■    -   4TTr    k      öT/ir (r      R) (33) 

14- 
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where k      is the coefficient of thermal conductivity of liquid water,  taken 

as    1.4   x    10'     cal/cm-sec-0K.  Eq.   (33) requires that 

R2Ia 
6 k. 

(3») 

I) 

I 

where the subscrips C and S refer to conditions at the droplet center and 

surface,   respectively.    This temperature variation is also shown in Fitf.   1 

and can be seen to be significantly lower than   A. T until the droplet 

approaches the boiling point.    Of course Eq.   (34) is not realistic in that 

region since it would require the droplet to superheat.    In reality,  vapor- 

ization would occur within the droplet and original nuclei effects,   eu     could 

be quite important.     In any event,   it is  clear that the approximation of a 

constant temperature field across Iht   droplet is  not approp'iaK- ai  laruc 

values of R   la. 

B.    Time Dependent Solutions 

The full finite difference scheme has been exercised for a limited 

number of cases.    As an example of the results,  droplet tempeiature his- 

tories vs.   time are shown in Fig.   2    for      an   la   of 2. 5   \ 10    cal/cc-sec 

and two initial particle sizes, 11 ■ 3.    10 ^m.     Note that the dro )let tempera- 

tures rapidly rise to a peak value and then slowly decay.     This decay results 

from the decrease in droplet radius with time.    The radii of both the 3   ind 

10 M m   particles decrease by    -20% in 2 msec and exhibit a characteristic 

e-tolding time as given by Eq.   (31).     The calculated droplet temperatures 

from their peak values onward are in good agreement with the steady stale 

predictions shown in Fig.   1. 

Examples of the gas radial temperature distributions for several 

configurations are shown in Fig.   3.    Curves C and D are for the same 

case,   R=3-m,    la   =   2. 5 x    10    cal/cm   -sec,   at two different times. 

Note that the profiles scale approximately inversely with r until large r, 

where they drop off more rapidly.    At small r the temperature profile is 

-15- 
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R0 = 10/im 
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Tco^ ZO'C 

t, msec. 

Fig.   2 The Rise in Droplet  Temperature Over Ambient vs.   Time for 
Two Different Droplet Sizes. 
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CAL/CC-SEC fitT\ mSEC 

A 2 5xl06 10 0.2 

B 2 5xl05 10 2.0 

c 2 5xl05 3 05 

D 25xlOb 3 20 

10° 

1 l-T 

J 1 L 

r, fim 

Fig.   3 Gas Temperature Profiles vs.   Radius for Several Configurations. 
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lower at the longer time.    This is because of the droplet cooling which 

occurs as a result of decreasing droplet size.    At large r the situation is 

reversed since the gas temperature in that region is still being driven up- 

wards towards an r'    distribution.    The characteristic time to approach 

this distribution at any distance r is given approximately by Eq.   (2),  and 

is independent of the intensity of the incident irradiation. 
5 

Curve B is a similar calculation for a 10 p m particle,  la " 2. 5 x 10 

cal'cc-sec,  at a time of 2 msec.      Once again,  th ; profile scales approxi- 

mately as r"1 for small r.    Shown for comparison as curve A is another 
6       , 

calculation for a 10 u droplet with an I   a of 2. 5 x 10    cal/cc-sc - at a 

time of 0. 2 msec.    Curves A and B correspond to two cases with the same 

energy input (la^t ).    However,  they are radically different.    Curve A is 

sharply bowed away from an r"    distribu^on, demonstrating the effect of 

the convection term in Eq.  (18).    It is recalled from Eq.   (32) that the initial 

vapjr velocity scales linearly with   la  anc' is thus an o-der of magnitude 

larger in case A than in case B.    On the other hand,  curve A falls below B 

at large r,   since the "conduction length" of the gas scales a.' t ,   Eq.   (2). 

No calculations of the radial water vapor (AX   ) distributions arc 

presented.    However,  these are cjuite similar in shape to the temperature 

distributions.    This is to be expected since it was demonstrated earlier 

that the characteristic time for diffusion was approximately the same as 

that for heat conduction. 

18. 

■■■ 



IV.    SUMMARY AND FUTURE DIRECTIONS 

A model nas been developed for the prediction of the time dependent 

behavior of the gas surrounding a water droplet under irradiation by a hi^h 

intensity laser beam.    The baf.ic phenomena included in the model are ab- 

sorption,  heating and vaporization in the droplet and convecticn,  thermal 

conduction and diffusion in the gas.    The model assumes volume absorption 

by the droplet,   a constant pressure gas,  and that the initial vapor velocity 

is much less than the local sound speed.    The conditions under which these 

assumptions are appropriate have been identified. 

A computer code employing a tully implicit Crank-Nicolson finite 

difference scheme has been developed for the numerical evaluation of the 

governing differential equations and a number of preliminary calculations 

has    been performed.    Simultaneously,   a steady state analysis of the system 

has been performed in order to identify the salient features of the modeled 

phenomena ovt-r a wide range of the problem parameters     From this ana- 

lysis it was demonstrated that the model was not strictly appropriate at 

large values of the quantity   R2 1 CL .  where the droplet temperature approaches 

the boiling point. 

A number of tasks are presently in process on this program and re- 

sults will be included in the final report.     The.e include: 

A) A review of the properties of atmospheric aerosols,   including 

particle size distribution functions,  absorption coefficients,  original 

nuclei,   etc. 

B) An extension of the steady state analysis to include convection 

effects. 

C) A matrix of computer calculations of the time dependent radial 

temperature profiles about a droplet.     Parameters to include particle 

radius,   laser intensity,  etc. 

D) First order estimates of the thermal blooming arising in typical 

scenarios. 
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E)    A study of the effects of original   Aitken  nuclei,   phase changes 

associated with original nuclei material and production of new chemical species. 

Possible internal boiling effects with accompanying superheating,  fragmenta- 

tion,   mass transport and shockheating of the air surrounding the droplet v,ill 

also be examined. 
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